Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing
نویسندگان
چکیده
Solving the SLAM problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. We investigate smoothing approaches as a viable alternative to extended Kalman filter-based solutions to the problem. In particular, we look at approaches that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact, they can be used in either batch or incremental mode, are better equipped to deal with non-linear process and measurement models, and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. In this paper we present the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. We present both simulation results and actual SLAM experiments in large-scale environments that underscore the potential of these methods as an alternative to EKF-based approaches.
منابع مشابه
The Bayes Tree: Enabling Incremental Reordering and Fluid Relinearization for Online Mapping
In this paper we present a novel data structure, the Bayes tree, which exploits the connections between graphical model inference and sparse linear algebra. The proposed data structure provides a new perspective on an entire class of simultaneous localization and mapping (SLAM) algorithms. Similar to a junction tree, a Bayes tree encodes a factored probability density, but unlike the junction t...
متن کاملFast Incremental Square Root Information Smoothing
We propose a novel approach to the problem of simultaneous localization and mapping (SLAM) based on incremental smoothing, that is suitable for real-time applications in large-scale environments. The main advantages over filter-based algorithms are that we solve the full SLAM problem without the need for any approximations, and that we do not suffer from linearization errors. We achieve efficie...
متن کاملA Partially Fixed Linearization Approach for Submap-Parametrized Smoothing and Mapping
We present an extension of a smoothing approach to Simultaneous Localization and Mapping (SLAM). We have previously introduced Square-Root SAM, a Smoothing and Mapping approach to SLAM based on Levenberg-Marquardt (LM) optimization. It iteratively finds the optimal nonlinear least squares solution (ML), where one iteration comprises of a linearization step, a matrix factorization, and a backsub...
متن کاملCovariance recovery from a square root information matrix for data association
Data association is one of the core problems of simultaneous localization and mapping (SLAM), and it requires knowledge about the uncertainties of the estimation problem in the form of marginal covariances. However, it is often difficult to access these quantities without calculating the full and dense covariance matrix, which is prohibitively expensive. We present a dynamic programming algorit...
متن کاملSquare Root SAM
Solving the SLAM problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. We investigate smoothing approaches as a viable alternative to extended Kalman filter-based solutions to the problem. In particular, we look at approaches that factorize either the associated information matrix or the measurement matrix into square root form. Such techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 25 شماره
صفحات -
تاریخ انتشار 2006